Metamath Proof Explorer


Theorem sspadd1

Description: A projective subspace sum is a superset of its first summand. ( ssun1 analog.) (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a A = Atoms K
padd0.p + ˙ = + 𝑃 K
Assertion sspadd1 K B X A Y A X X + ˙ Y

Proof

Step Hyp Ref Expression
1 padd0.a A = Atoms K
2 padd0.p + ˙ = + 𝑃 K
3 ssun1 X X Y
4 ssun1 X Y X Y p A | q X r Y p K q join K r
5 3 4 sstri X X Y p A | q X r Y p K q join K r
6 eqid K = K
7 eqid join K = join K
8 6 7 1 2 paddval K B X A Y A X + ˙ Y = X Y p A | q X r Y p K q join K r
9 5 8 sseqtrrid K B X A Y A X X + ˙ Y