Metamath Proof Explorer


Theorem sspadd2

Description: A projective subspace sum is a superset of its second summand. ( ssun2 analog.) (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a A = Atoms K
padd0.p + ˙ = + 𝑃 K
Assertion sspadd2 K B X A Y A X Y + ˙ X

Proof

Step Hyp Ref Expression
1 padd0.a A = Atoms K
2 padd0.p + ˙ = + 𝑃 K
3 ssun2 X Y X
4 ssun1 Y X Y X p A | q Y r X p K q join K r
5 3 4 sstri X Y X p A | q Y r X p K q join K r
6 eqid K = K
7 eqid join K = join K
8 6 7 1 2 paddval K B Y A X A Y + ˙ X = Y X p A | q Y r X p K q join K r
9 8 3com23 K B X A Y A Y + ˙ X = Y X p A | q Y r X p K q join K r
10 5 9 sseqtrrid K B X A Y A X Y + ˙ X