Metamath Proof Explorer


Theorem sspgval

Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspg.y Y = BaseSet W
sspg.g G = + v U
sspg.f F = + v W
sspg.h H = SubSp U
Assertion sspgval U NrmCVec W H A Y B Y A F B = A G B

Proof

Step Hyp Ref Expression
1 sspg.y Y = BaseSet W
2 sspg.g G = + v U
3 sspg.f F = + v W
4 sspg.h H = SubSp U
5 1 2 3 4 sspg U NrmCVec W H F = G Y × Y
6 5 oveqd U NrmCVec W H A F B = A G Y × Y B
7 ovres A Y B Y A G Y × Y B = A G B
8 6 7 sylan9eq U NrmCVec W H A Y B Y A F B = A G B