Metamath Proof Explorer


Theorem sspid

Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis sspid.h H = SubSp U
Assertion sspid U NrmCVec U H

Proof

Step Hyp Ref Expression
1 sspid.h H = SubSp U
2 ssid + v U + v U
3 ssid 𝑠OLD U 𝑠OLD U
4 ssid norm CV U norm CV U
5 2 3 4 3pm3.2i + v U + v U 𝑠OLD U 𝑠OLD U norm CV U norm CV U
6 5 jctr U NrmCVec U NrmCVec + v U + v U 𝑠OLD U 𝑠OLD U norm CV U norm CV U
7 eqid + v U = + v U
8 eqid 𝑠OLD U = 𝑠OLD U
9 eqid norm CV U = norm CV U
10 7 7 8 8 9 9 1 isssp U NrmCVec U H U NrmCVec + v U + v U 𝑠OLD U 𝑠OLD U norm CV U norm CV U
11 6 10 mpbird U NrmCVec U H