Metamath Proof Explorer


Theorem sspimsval

Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspims.y Y = BaseSet W
sspims.d D = IndMet U
sspims.c C = IndMet W
sspims.h H = SubSp U
Assertion sspimsval U NrmCVec W H A Y B Y A C B = A D B

Proof

Step Hyp Ref Expression
1 sspims.y Y = BaseSet W
2 sspims.d D = IndMet U
3 sspims.c C = IndMet W
4 sspims.h H = SubSp U
5 4 sspnv U NrmCVec W H W NrmCVec
6 eqid - v W = - v W
7 1 6 nvmcl W NrmCVec A Y B Y A - v W B Y
8 7 3expb W NrmCVec A Y B Y A - v W B Y
9 5 8 sylan U NrmCVec W H A Y B Y A - v W B Y
10 eqid norm CV U = norm CV U
11 eqid norm CV W = norm CV W
12 1 10 11 4 sspnval U NrmCVec W H A - v W B Y norm CV W A - v W B = norm CV U A - v W B
13 12 3expa U NrmCVec W H A - v W B Y norm CV W A - v W B = norm CV U A - v W B
14 9 13 syldan U NrmCVec W H A Y B Y norm CV W A - v W B = norm CV U A - v W B
15 eqid - v U = - v U
16 1 15 6 4 sspmval U NrmCVec W H A Y B Y A - v W B = A - v U B
17 16 fveq2d U NrmCVec W H A Y B Y norm CV U A - v W B = norm CV U A - v U B
18 14 17 eqtrd U NrmCVec W H A Y B Y norm CV W A - v W B = norm CV U A - v U B
19 1 6 11 3 imsdval W NrmCVec A Y B Y A C B = norm CV W A - v W B
20 19 3expb W NrmCVec A Y B Y A C B = norm CV W A - v W B
21 5 20 sylan U NrmCVec W H A Y B Y A C B = norm CV W A - v W B
22 eqid BaseSet U = BaseSet U
23 22 1 4 sspba U NrmCVec W H Y BaseSet U
24 23 sseld U NrmCVec W H A Y A BaseSet U
25 23 sseld U NrmCVec W H B Y B BaseSet U
26 24 25 anim12d U NrmCVec W H A Y B Y A BaseSet U B BaseSet U
27 26 imp U NrmCVec W H A Y B Y A BaseSet U B BaseSet U
28 22 15 10 2 imsdval U NrmCVec A BaseSet U B BaseSet U A D B = norm CV U A - v U B
29 28 3expb U NrmCVec A BaseSet U B BaseSet U A D B = norm CV U A - v U B
30 29 adantlr U NrmCVec W H A BaseSet U B BaseSet U A D B = norm CV U A - v U B
31 27 30 syldan U NrmCVec W H A Y B Y A D B = norm CV U A - v U B
32 18 21 31 3eqtr4d U NrmCVec W H A Y B Y A C B = A D B