Metamath Proof Explorer


Theorem sspm

Description: Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspm.y Y = BaseSet W
sspm.m M = - v U
sspm.l L = - v W
sspm.h H = SubSp U
Assertion sspm U NrmCVec W H L = M Y × Y

Proof

Step Hyp Ref Expression
1 sspm.y Y = BaseSet W
2 sspm.m M = - v U
3 sspm.l L = - v W
4 sspm.h H = SubSp U
5 1 2 3 4 sspmval U NrmCVec W H x Y y Y x L y = x M y
6 1 3 nvmf W NrmCVec L : Y × Y Y
7 eqid BaseSet U = BaseSet U
8 7 2 nvmf U NrmCVec M : BaseSet U × BaseSet U BaseSet U
9 1 4 5 6 8 sspmlem U NrmCVec W H L = M Y × Y