Metamath Proof Explorer


Theorem sspmval

Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspm.y Y = BaseSet W
sspm.m M = - v U
sspm.l L = - v W
sspm.h H = SubSp U
Assertion sspmval U NrmCVec W H A Y B Y A L B = A M B

Proof

Step Hyp Ref Expression
1 sspm.y Y = BaseSet W
2 sspm.m M = - v U
3 sspm.l L = - v W
4 sspm.h H = SubSp U
5 4 sspnv U NrmCVec W H W NrmCVec
6 neg1cn 1
7 eqid 𝑠OLD W = 𝑠OLD W
8 1 7 nvscl W NrmCVec 1 B Y -1 𝑠OLD W B Y
9 6 8 mp3an2 W NrmCVec B Y -1 𝑠OLD W B Y
10 9 ex W NrmCVec B Y -1 𝑠OLD W B Y
11 5 10 syl U NrmCVec W H B Y -1 𝑠OLD W B Y
12 11 anim2d U NrmCVec W H A Y B Y A Y -1 𝑠OLD W B Y
13 12 imp U NrmCVec W H A Y B Y A Y -1 𝑠OLD W B Y
14 eqid + v U = + v U
15 eqid + v W = + v W
16 1 14 15 4 sspgval U NrmCVec W H A Y -1 𝑠OLD W B Y A + v W -1 𝑠OLD W B = A + v U -1 𝑠OLD W B
17 13 16 syldan U NrmCVec W H A Y B Y A + v W -1 𝑠OLD W B = A + v U -1 𝑠OLD W B
18 eqid 𝑠OLD U = 𝑠OLD U
19 1 18 7 4 sspsval U NrmCVec W H 1 B Y -1 𝑠OLD W B = -1 𝑠OLD U B
20 6 19 mpanr1 U NrmCVec W H B Y -1 𝑠OLD W B = -1 𝑠OLD U B
21 20 adantrl U NrmCVec W H A Y B Y -1 𝑠OLD W B = -1 𝑠OLD U B
22 21 oveq2d U NrmCVec W H A Y B Y A + v U -1 𝑠OLD W B = A + v U -1 𝑠OLD U B
23 17 22 eqtrd U NrmCVec W H A Y B Y A + v W -1 𝑠OLD W B = A + v U -1 𝑠OLD U B
24 1 15 7 3 nvmval W NrmCVec A Y B Y A L B = A + v W -1 𝑠OLD W B
25 24 3expb W NrmCVec A Y B Y A L B = A + v W -1 𝑠OLD W B
26 5 25 sylan U NrmCVec W H A Y B Y A L B = A + v W -1 𝑠OLD W B
27 eqid BaseSet U = BaseSet U
28 27 1 4 sspba U NrmCVec W H Y BaseSet U
29 28 sseld U NrmCVec W H A Y A BaseSet U
30 28 sseld U NrmCVec W H B Y B BaseSet U
31 29 30 anim12d U NrmCVec W H A Y B Y A BaseSet U B BaseSet U
32 31 imp U NrmCVec W H A Y B Y A BaseSet U B BaseSet U
33 27 14 18 2 nvmval U NrmCVec A BaseSet U B BaseSet U A M B = A + v U -1 𝑠OLD U B
34 33 3expb U NrmCVec A BaseSet U B BaseSet U A M B = A + v U -1 𝑠OLD U B
35 34 adantlr U NrmCVec W H A BaseSet U B BaseSet U A M B = A + v U -1 𝑠OLD U B
36 32 35 syldan U NrmCVec W H A Y B Y A M B = A + v U -1 𝑠OLD U B
37 23 26 36 3eqtr4d U NrmCVec W H A Y B Y A L B = A M B