Step |
Hyp |
Ref |
Expression |
1 |
|
sspn.y |
|
2 |
|
sspn.n |
|
3 |
|
sspn.m |
|
4 |
|
sspn.h |
|
5 |
4
|
sspnv |
|
6 |
1 3
|
nvf |
|
7 |
5 6
|
syl |
|
8 |
7
|
ffnd |
|
9 |
|
eqid |
|
10 |
9 2
|
nvf |
|
11 |
10
|
ffnd |
|
12 |
11
|
adantr |
|
13 |
9 1 4
|
sspba |
|
14 |
|
fnssres |
|
15 |
12 13 14
|
syl2anc |
|
16 |
10
|
ffund |
|
17 |
16
|
funresd |
|
18 |
17
|
ad2antrr |
|
19 |
|
fnresdm |
|
20 |
8 19
|
syl |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
21 22 23 24 2 3 4
|
isssp |
|
26 |
25
|
simplbda |
|
27 |
26
|
simp3d |
|
28 |
|
ssres |
|
29 |
27 28
|
syl |
|
30 |
20 29
|
eqsstrrd |
|
31 |
30
|
adantr |
|
32 |
6
|
fdmd |
|
33 |
32
|
eleq2d |
|
34 |
33
|
biimpar |
|
35 |
5 34
|
sylan |
|
36 |
|
funssfv |
|
37 |
18 31 35 36
|
syl3anc |
|
38 |
37
|
eqcomd |
|
39 |
8 15 38
|
eqfnfvd |
|