Metamath Proof Explorer


Theorem sspnv

Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis sspnv.h H = SubSp U
Assertion sspnv U NrmCVec W H W NrmCVec

Proof

Step Hyp Ref Expression
1 sspnv.h H = SubSp U
2 eqid + v U = + v U
3 eqid + v W = + v W
4 eqid 𝑠OLD U = 𝑠OLD U
5 eqid 𝑠OLD W = 𝑠OLD W
6 eqid norm CV U = norm CV U
7 eqid norm CV W = norm CV W
8 2 3 4 5 6 7 1 isssp U NrmCVec W H W NrmCVec + v W + v U 𝑠OLD W 𝑠OLD U norm CV W norm CV U
9 8 simprbda U NrmCVec W H W NrmCVec