Metamath Proof Explorer


Theorem sspnval

Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspn.y Y = BaseSet W
sspn.n N = norm CV U
sspn.m M = norm CV W
sspn.h H = SubSp U
Assertion sspnval U NrmCVec W H A Y M A = N A

Proof

Step Hyp Ref Expression
1 sspn.y Y = BaseSet W
2 sspn.n N = norm CV U
3 sspn.m M = norm CV W
4 sspn.h H = SubSp U
5 1 2 3 4 sspn U NrmCVec W H M = N Y
6 5 fveq1d U NrmCVec W H M A = N Y A
7 fvres A Y N Y A = N A
8 6 7 sylan9eq U NrmCVec W H A Y M A = N A
9 8 3impa U NrmCVec W H A Y M A = N A