Metamath Proof Explorer


Theorem sspr

Description: The subsets of a pair. (Contributed by NM, 16-Mar-2006) (Proof shortened by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion sspr A B C A = A = B A = C A = B C

Proof

Step Hyp Ref Expression
1 uncom B C = B C
2 un0 B C = B C
3 1 2 eqtri B C = B C
4 3 sseq2i A B C A B C
5 0ss A
6 5 biantrur A B C A A B C
7 4 6 bitr3i A B C A A B C
8 ssunpr A A B C A = A = B A = C A = B C
9 uncom B = B
10 un0 B = B
11 9 10 eqtri B = B
12 11 eqeq2i A = B A = B
13 12 orbi2i A = A = B A = A = B
14 uncom C = C
15 un0 C = C
16 14 15 eqtri C = C
17 16 eqeq2i A = C A = C
18 3 eqeq2i A = B C A = B C
19 17 18 orbi12i A = C A = B C A = C A = B C
20 13 19 orbi12i A = A = B A = C A = B C A = A = B A = C A = B C
21 7 8 20 3bitri A B C A = A = B A = C A = B C