Metamath Proof Explorer


Theorem sspreima

Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017)

Ref Expression
Assertion sspreima Fun F A B F -1 A F -1 B

Proof

Step Hyp Ref Expression
1 inpreima Fun F F -1 A B = F -1 A F -1 B
2 df-ss A B A B = A
3 2 biimpi A B A B = A
4 3 imaeq2d A B F -1 A B = F -1 A
5 1 4 sylan9req Fun F A B F -1 A F -1 B = F -1 A
6 df-ss F -1 A F -1 B F -1 A F -1 B = F -1 A
7 5 6 sylibr Fun F A B F -1 A F -1 B