Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
ssprss
Next ⟩
ssprsseq
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssprss
Description:
A pair as subset of a pair.
(Contributed by
AV
, 26-Oct-2020)
Ref
Expression
Assertion
ssprss
⊢
A
∈
V
∧
B
∈
W
→
A
B
⊆
C
D
↔
A
=
C
∨
A
=
D
∧
B
=
C
∨
B
=
D
Proof
Step
Hyp
Ref
Expression
1
prssg
⊢
A
∈
V
∧
B
∈
W
→
A
∈
C
D
∧
B
∈
C
D
↔
A
B
⊆
C
D
2
elprg
⊢
A
∈
V
→
A
∈
C
D
↔
A
=
C
∨
A
=
D
3
elprg
⊢
B
∈
W
→
B
∈
C
D
↔
B
=
C
∨
B
=
D
4
2
3
bi2anan9
⊢
A
∈
V
∧
B
∈
W
→
A
∈
C
D
∧
B
∈
C
D
↔
A
=
C
∨
A
=
D
∧
B
=
C
∨
B
=
D
5
1
4
bitr3d
⊢
A
∈
V
∧
B
∈
W
→
A
B
⊆
C
D
↔
A
=
C
∨
A
=
D
∧
B
=
C
∨
B
=
D