Metamath Proof Explorer


Theorem ssprsseq

Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020)

Ref Expression
Assertion ssprsseq A V B W A B A B C D A B = C D

Proof

Step Hyp Ref Expression
1 ssprss A V B W A B C D A = C A = D B = C B = D
2 1 3adant3 A V B W A B A B C D A = C A = D B = C B = D
3 eqneqall A = B A B A B = C D
4 eqtr3 A = C B = C A = B
5 3 4 syl11 A B A = C B = C A B = C D
6 5 3ad2ant3 A V B W A B A = C B = C A B = C D
7 6 com12 A = C B = C A V B W A B A B = C D
8 preq12 A = D B = C A B = D C
9 prcom D C = C D
10 8 9 eqtrdi A = D B = C A B = C D
11 10 a1d A = D B = C A V B W A B A B = C D
12 preq12 A = C B = D A B = C D
13 12 a1d A = C B = D A V B W A B A B = C D
14 eqtr3 A = D B = D A = B
15 3 14 syl11 A B A = D B = D A B = C D
16 15 3ad2ant3 A V B W A B A = D B = D A B = C D
17 16 com12 A = D B = D A V B W A B A B = C D
18 7 11 13 17 ccase A = C A = D B = C B = D A V B W A B A B = C D
19 18 com12 A V B W A B A = C A = D B = C B = D A B = C D
20 2 19 sylbid A V B W A B A B C D A B = C D
21 eqimss A B = C D A B C D
22 20 21 impbid1 A V B W A B A B C D A B = C D