Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sspss
Next ⟩
pssirr
Metamath Proof Explorer
Ascii
Unicode
Theorem
sspss
Description:
Subclass in terms of proper subclass.
(Contributed by
NM
, 25-Feb-1996)
Ref
Expression
Assertion
sspss
⊢
A
⊆
B
↔
A
⊂
B
∨
A
=
B
Proof
Step
Hyp
Ref
Expression
1
dfpss2
⊢
A
⊂
B
↔
A
⊆
B
∧
¬
A
=
B
2
1
simplbi2
⊢
A
⊆
B
→
¬
A
=
B
→
A
⊂
B
3
2
con1d
⊢
A
⊆
B
→
¬
A
⊂
B
→
A
=
B
4
3
orrd
⊢
A
⊆
B
→
A
⊂
B
∨
A
=
B
5
pssss
⊢
A
⊂
B
→
A
⊆
B
6
eqimss
⊢
A
=
B
→
A
⊆
B
7
5
6
jaoi
⊢
A
⊂
B
∨
A
=
B
→
A
⊆
B
8
4
7
impbii
⊢
A
⊆
B
↔
A
⊂
B
∨
A
=
B