Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sspsstr
Next ⟩
psssstr
Metamath Proof Explorer
Ascii
Unicode
Theorem
sspsstr
Description:
Transitive law for subclass and proper subclass.
(Contributed by
NM
, 3-Apr-1996)
Ref
Expression
Assertion
sspsstr
⊢
A
⊆
B
∧
B
⊂
C
→
A
⊂
C
Proof
Step
Hyp
Ref
Expression
1
sspss
⊢
A
⊆
B
↔
A
⊂
B
∨
A
=
B
2
psstr
⊢
A
⊂
B
∧
B
⊂
C
→
A
⊂
C
3
2
ex
⊢
A
⊂
B
→
B
⊂
C
→
A
⊂
C
4
psseq1
⊢
A
=
B
→
A
⊂
C
↔
B
⊂
C
5
4
biimprd
⊢
A
=
B
→
B
⊂
C
→
A
⊂
C
6
3
5
jaoi
⊢
A
⊂
B
∨
A
=
B
→
B
⊂
C
→
A
⊂
C
7
6
imp
⊢
A
⊂
B
∨
A
=
B
∧
B
⊂
C
→
A
⊂
C
8
1
7
sylanb
⊢
A
⊆
B
∧
B
⊂
C
→
A
⊂
C