Metamath Proof Explorer


Theorem sspsstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion sspsstr A B B C A C

Proof

Step Hyp Ref Expression
1 sspss A B A B A = B
2 psstr A B B C A C
3 2 ex A B B C A C
4 psseq1 A = B A C B C
5 4 biimprd A = B B C A C
6 3 5 jaoi A B A = B B C A C
7 6 imp A B A = B B C A C
8 1 7 sylanb A B B C A C