Metamath Proof Explorer
Description: Transitivity involving subclass and proper subclass inclusion.
Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
sspsstrd.1 |
|
|
|
sspsstrd.2 |
|
|
Assertion |
sspsstrd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspsstrd.1 |
|
| 2 |
|
sspsstrd.2 |
|
| 3 |
|
sspsstr |
|
| 4 |
1 2 3
|
syl2anc |
|