Metamath Proof Explorer


Theorem sspsstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses sspsstrd.1 φ A B
sspsstrd.2 φ B C
Assertion sspsstrd φ A C

Proof

Step Hyp Ref Expression
1 sspsstrd.1 φ A B
2 sspsstrd.2 φ B C
3 sspsstr A B B C A C
4 1 2 3 syl2anc φ A C