Metamath Proof Explorer


Theorem sspsstri

Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004)

Ref Expression
Assertion sspsstri A B B A A B A = B B A

Proof

Step Hyp Ref Expression
1 or32 A B B A A = B A B A = B B A
2 sspss A B A B A = B
3 sspss B A B A B = A
4 eqcom B = A A = B
5 4 orbi2i B A B = A B A A = B
6 3 5 bitri B A B A A = B
7 2 6 orbi12i A B B A A B A = B B A A = B
8 orordir A B B A A = B A B A = B B A A = B
9 7 8 bitr4i A B B A A B B A A = B
10 df-3or A B A = B B A A B A = B B A
11 1 9 10 3bitr4i A B B A A B A = B B A