Metamath Proof Explorer


Theorem sspsval

Description: Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ssps.y Y = BaseSet W
ssps.s S = 𝑠OLD U
ssps.r R = 𝑠OLD W
ssps.h H = SubSp U
Assertion sspsval U NrmCVec W H A B Y A R B = A S B

Proof

Step Hyp Ref Expression
1 ssps.y Y = BaseSet W
2 ssps.s S = 𝑠OLD U
3 ssps.r R = 𝑠OLD W
4 ssps.h H = SubSp U
5 1 2 3 4 ssps U NrmCVec W H R = S × Y
6 5 oveqd U NrmCVec W H A R B = A S × Y B
7 ovres A B Y A S × Y B = A S B
8 6 7 sylan9eq U NrmCVec W H A B Y A R B = A S B