Metamath Proof Explorer


Theorem sspval

Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses sspval.g G = + v U
sspval.s S = 𝑠OLD U
sspval.n N = norm CV U
sspval.h H = SubSp U
Assertion sspval U NrmCVec H = w NrmCVec | + v w G 𝑠OLD w S norm CV w N

Proof

Step Hyp Ref Expression
1 sspval.g G = + v U
2 sspval.s S = 𝑠OLD U
3 sspval.n N = norm CV U
4 sspval.h H = SubSp U
5 fveq2 u = U + v u = + v U
6 5 1 eqtr4di u = U + v u = G
7 6 sseq2d u = U + v w + v u + v w G
8 fveq2 u = U 𝑠OLD u = 𝑠OLD U
9 8 2 eqtr4di u = U 𝑠OLD u = S
10 9 sseq2d u = U 𝑠OLD w 𝑠OLD u 𝑠OLD w S
11 fveq2 u = U norm CV u = norm CV U
12 11 3 eqtr4di u = U norm CV u = N
13 12 sseq2d u = U norm CV w norm CV u norm CV w N
14 7 10 13 3anbi123d u = U + v w + v u 𝑠OLD w 𝑠OLD u norm CV w norm CV u + v w G 𝑠OLD w S norm CV w N
15 14 rabbidv u = U w NrmCVec | + v w + v u 𝑠OLD w 𝑠OLD u norm CV w norm CV u = w NrmCVec | + v w G 𝑠OLD w S norm CV w N
16 df-ssp SubSp = u NrmCVec w NrmCVec | + v w + v u 𝑠OLD w 𝑠OLD u norm CV w norm CV u
17 1 fvexi G V
18 17 pwex 𝒫 G V
19 2 fvexi S V
20 19 pwex 𝒫 S V
21 18 20 xpex 𝒫 G × 𝒫 S V
22 3 fvexi N V
23 22 pwex 𝒫 N V
24 21 23 xpex 𝒫 G × 𝒫 S × 𝒫 N V
25 rabss w NrmCVec | + v w G 𝑠OLD w S norm CV w N 𝒫 G × 𝒫 S × 𝒫 N w NrmCVec + v w G 𝑠OLD w S norm CV w N w 𝒫 G × 𝒫 S × 𝒫 N
26 fvex + v w V
27 26 elpw + v w 𝒫 G + v w G
28 fvex 𝑠OLD w V
29 28 elpw 𝑠OLD w 𝒫 S 𝑠OLD w S
30 opelxpi + v w 𝒫 G 𝑠OLD w 𝒫 S + v w 𝑠OLD w 𝒫 G × 𝒫 S
31 27 29 30 syl2anbr + v w G 𝑠OLD w S + v w 𝑠OLD w 𝒫 G × 𝒫 S
32 fvex norm CV w V
33 32 elpw norm CV w 𝒫 N norm CV w N
34 33 biimpri norm CV w N norm CV w 𝒫 N
35 opelxpi + v w 𝑠OLD w 𝒫 G × 𝒫 S norm CV w 𝒫 N + v w 𝑠OLD w norm CV w 𝒫 G × 𝒫 S × 𝒫 N
36 31 34 35 syl2an + v w G 𝑠OLD w S norm CV w N + v w 𝑠OLD w norm CV w 𝒫 G × 𝒫 S × 𝒫 N
37 36 3impa + v w G 𝑠OLD w S norm CV w N + v w 𝑠OLD w norm CV w 𝒫 G × 𝒫 S × 𝒫 N
38 eqid + v w = + v w
39 eqid 𝑠OLD w = 𝑠OLD w
40 eqid norm CV w = norm CV w
41 38 39 40 nvop w NrmCVec w = + v w 𝑠OLD w norm CV w
42 41 eleq1d w NrmCVec w 𝒫 G × 𝒫 S × 𝒫 N + v w 𝑠OLD w norm CV w 𝒫 G × 𝒫 S × 𝒫 N
43 37 42 syl5ibr w NrmCVec + v w G 𝑠OLD w S norm CV w N w 𝒫 G × 𝒫 S × 𝒫 N
44 25 43 mprgbir w NrmCVec | + v w G 𝑠OLD w S norm CV w N 𝒫 G × 𝒫 S × 𝒫 N
45 24 44 ssexi w NrmCVec | + v w G 𝑠OLD w S norm CV w N V
46 15 16 45 fvmpt U NrmCVec SubSp U = w NrmCVec | + v w G 𝑠OLD w S norm CV w N
47 4 46 syl5eq U NrmCVec H = w NrmCVec | + v w G 𝑠OLD w S norm CV w N