Metamath Proof Explorer


Theorem sspwb

Description: The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of TakeutiZaring p. 18. (Contributed by NM, 13-Oct-1996)

Ref Expression
Assertion sspwb A B 𝒫 A 𝒫 B

Proof

Step Hyp Ref Expression
1 sspw A B 𝒫 A 𝒫 B
2 ssel 𝒫 A 𝒫 B x 𝒫 A x 𝒫 B
3 snex x V
4 3 elpw x 𝒫 A x A
5 vex x V
6 5 snss x A x A
7 4 6 bitr4i x 𝒫 A x A
8 3 elpw x 𝒫 B x B
9 5 snss x B x B
10 8 9 bitr4i x 𝒫 B x B
11 2 7 10 3imtr3g 𝒫 A 𝒫 B x A x B
12 11 ssrdv 𝒫 A 𝒫 B A B
13 1 12 impbii A B 𝒫 A 𝒫 B