Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Power classes
sspwi
Next ⟩
sspwd
Metamath Proof Explorer
Ascii
Unicode
Theorem
sspwi
Description:
The powerclass preserves inclusion (inference form).
(Contributed by
BJ
, 13-Apr-2024)
Ref
Expression
Hypothesis
sspwi.1
⊢
A
⊆
B
Assertion
sspwi
⊢
𝒫
A
⊆
𝒫
B
Proof
Step
Hyp
Ref
Expression
1
sspwi.1
⊢
A
⊆
B
2
sspw
⊢
A
⊆
B
→
𝒫
A
⊆
𝒫
B
3
1
2
ax-mp
⊢
𝒫
A
⊆
𝒫
B