Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp is sspwimpVD without virtual deductions and was derived from sspwimpVD . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
1:: | |- (. A C_ B ->. A C_ B ). |
2:: | |- (. .............. x e. ~P A ->. x e. ~P A ). |
3:2: | |- (. .............. x e. ~P A ->. x C_ A ). |
4:3,1: | |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ). |
5:: | |- x e.V |
6:4,5: | |- (. (. A C B ,. x e. ~P A ). ->. x e. ~P B ). |
7:6: | |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ). |
8:7: | |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ). |
9:8: | |- (. A C_ B ->. ~P A C_ ~P B ). |
qed:9: | |- ( A C_ B -> ~P A C_ ~P B ) |
Ref | Expression | ||
---|---|---|---|
Assertion | sspwimpVD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | ||
2 | 1 | vd01 | |
3 | idn1 | ||
4 | idn1 | ||
5 | elpwi | ||
6 | 4 5 | el1 | |
7 | sstr | ||
8 | 7 | ancoms | |
9 | 3 6 8 | el12 | |
10 | 2 9 | elpwgdedVD | |
11 | 2 9 10 | un0.1 | |
12 | 11 | int2 | |
13 | 12 | gen11 | |
14 | dfss2 | ||
15 | 14 | biimpri | |
16 | 13 15 | el1 | |
17 | 16 | in1 |