Metamath Proof Explorer


Theorem sspwimpVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp is sspwimpVD without virtual deductions and was derived from sspwimpVD . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- (. A C_ B ->. A C_ B ).
2:: |- (. .............. x e. ~P A ->. x e. ~P A ).
3:2: |- (. .............. x e. ~P A ->. x C_ A ).
4:3,1: |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ).
5:: |- x e.V
6:4,5: |- (. (. A C B ,. x e. ~P A ). ->. x e. ~P B ).
7:6: |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ).
8:7: |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ).
9:8: |- (. A C_ B ->. ~P A C_ ~P B ).
qed:9: |- ( A C_ B -> ~P A C_ ~P B )

Ref Expression
Assertion sspwimpVD A B 𝒫 A 𝒫 B

Proof

Step Hyp Ref Expression
1 vex x V
2 1 vd01 x V
3 idn1 A B A B
4 idn1 x 𝒫 A x 𝒫 A
5 elpwi x 𝒫 A x A
6 4 5 el1 x 𝒫 A x A
7 sstr x A A B x B
8 7 ancoms A B x A x B
9 3 6 8 el12 A B x 𝒫 A x B
10 2 9 elpwgdedVD A B x 𝒫 A x 𝒫 B
11 2 9 10 un0.1 A B x 𝒫 A x 𝒫 B
12 11 int2 A B x 𝒫 A x 𝒫 B
13 12 gen11 A B x x 𝒫 A x 𝒫 B
14 dfss2 𝒫 A 𝒫 B x x 𝒫 A x 𝒫 B
15 14 biimpri x x 𝒫 A x 𝒫 B 𝒫 A 𝒫 B
16 13 15 el1 A B 𝒫 A 𝒫 B
17 16 in1 A B 𝒫 A 𝒫 B