Metamath Proof Explorer


Theorem sspwuni

Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion sspwuni A 𝒫 B A B

Proof

Step Hyp Ref Expression
1 velpw x 𝒫 B x B
2 1 ralbii x A x 𝒫 B x A x B
3 dfss3 A 𝒫 B x A x 𝒫 B
4 unissb A B x A x B
5 2 3 4 3bitr4i A 𝒫 B A B