Metamath Proof Explorer


Theorem ssrab

Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssrab B x A | φ B A x B φ

Proof

Step Hyp Ref Expression
1 df-rab x A | φ = x | x A φ
2 1 sseq2i B x A | φ B x | x A φ
3 ssab B x | x A φ x x B x A φ
4 dfss3 B A x B x A
5 4 anbi1i B A x B φ x B x A x B φ
6 r19.26 x B x A φ x B x A x B φ
7 df-ral x B x A φ x x B x A φ
8 5 6 7 3bitr2ri x x B x A φ B A x B φ
9 2 3 8 3bitri B x A | φ B A x B φ