Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ssrab
Next ⟩
ssrabdv
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssrab
Description:
Subclass of a restricted class abstraction.
(Contributed by
NM
, 16-Aug-2006)
Ref
Expression
Assertion
ssrab
⊢
B
⊆
x
∈
A
|
φ
↔
B
⊆
A
∧
∀
x
∈
B
φ
Proof
Step
Hyp
Ref
Expression
1
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
2
1
sseq2i
⊢
B
⊆
x
∈
A
|
φ
↔
B
⊆
x
|
x
∈
A
∧
φ
3
ssab
⊢
B
⊆
x
|
x
∈
A
∧
φ
↔
∀
x
x
∈
B
→
x
∈
A
∧
φ
4
dfss3
⊢
B
⊆
A
↔
∀
x
∈
B
x
∈
A
5
4
anbi1i
⊢
B
⊆
A
∧
∀
x
∈
B
φ
↔
∀
x
∈
B
x
∈
A
∧
∀
x
∈
B
φ
6
r19.26
⊢
∀
x
∈
B
x
∈
A
∧
φ
↔
∀
x
∈
B
x
∈
A
∧
∀
x
∈
B
φ
7
df-ral
⊢
∀
x
∈
B
x
∈
A
∧
φ
↔
∀
x
x
∈
B
→
x
∈
A
∧
φ
8
5
6
7
3bitr2ri
⊢
∀
x
x
∈
B
→
x
∈
A
∧
φ
↔
B
⊆
A
∧
∀
x
∈
B
φ
9
2
3
8
3bitri
⊢
B
⊆
x
∈
A
|
φ
↔
B
⊆
A
∧
∀
x
∈
B
φ