Metamath Proof Explorer
Description: Subclass of a restricted class abstraction (deduction form).
(Contributed by Glauco Siliprandi, 5-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ssrabdf.1 |
|
|
|
ssrabdf.2 |
|
|
|
ssrabdf.3 |
|
|
|
ssrabdf.4 |
|
|
|
ssrabdf.5 |
|
|
Assertion |
ssrabdf |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrabdf.1 |
|
2 |
|
ssrabdf.2 |
|
3 |
|
ssrabdf.3 |
|
4 |
|
ssrabdf.4 |
|
5 |
|
ssrabdf.5 |
|
6 |
3 5
|
ralrimia |
|
7 |
2 1
|
ssrabf |
|
8 |
4 6 7
|
sylanbrc |
|