Metamath Proof Explorer


Theorem ssrabdf

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses ssrabdf.1 _ x A
ssrabdf.2 _ x B
ssrabdf.3 x φ
ssrabdf.4 φ B A
ssrabdf.5 φ x B ψ
Assertion ssrabdf φ B x A | ψ

Proof

Step Hyp Ref Expression
1 ssrabdf.1 _ x A
2 ssrabdf.2 _ x B
3 ssrabdf.3 x φ
4 ssrabdf.4 φ B A
5 ssrabdf.5 φ x B ψ
6 3 5 ralrimia φ x B ψ
7 2 1 ssrabf B x A | ψ B A x B ψ
8 4 6 7 sylanbrc φ B x A | ψ