Metamath Proof Explorer


Theorem ssrabdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006)

Ref Expression
Hypotheses ssrabdv.1 φ B A
ssrabdv.2 φ x B ψ
Assertion ssrabdv φ B x A | ψ

Proof

Step Hyp Ref Expression
1 ssrabdv.1 φ B A
2 ssrabdv.2 φ x B ψ
3 2 ralrimiva φ x B ψ
4 ssrab B x A | ψ B A x B ψ
5 1 3 4 sylanbrc φ B x A | ψ