Metamath Proof Explorer


Theorem ssrabf

Description: Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ssrabf.1 _ x B
ssrabf.2 _ x A
Assertion ssrabf B x A | φ B A x B φ

Proof

Step Hyp Ref Expression
1 ssrabf.1 _ x B
2 ssrabf.2 _ x A
3 df-rab x A | φ = x | x A φ
4 3 sseq2i B x A | φ B x | x A φ
5 1 ssabf B x | x A φ x x B x A φ
6 1 2 dfss3f B A x B x A
7 6 anbi1i B A x B φ x B x A x B φ
8 r19.26 x B x A φ x B x A x B φ
9 df-ral x B x A φ x x B x A φ
10 7 8 9 3bitr2ri x x B x A φ B A x B φ
11 4 5 10 3bitri B x A | φ B A x B φ