Metamath Proof Explorer


Theorem ssralv2

Description: Quantification restricted to a subclass for two quantifiers. ssralv for two quantifiers. The proof of ssralv2 was automatically generated by minimizing the automatically translated proof of ssralv2VD . The automatic translation is by the tools program translate__without__overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ssralv2 A B C D x B y D φ x A y C φ

Proof

Step Hyp Ref Expression
1 nfv x A B C D
2 nfra1 x x B y D φ
3 ssralv A B x B y D φ x A y D φ
4 3 adantr A B C D x B y D φ x A y D φ
5 df-ral x A y D φ x x A y D φ
6 4 5 syl6ib A B C D x B y D φ x x A y D φ
7 sp x x A y D φ x A y D φ
8 6 7 syl6 A B C D x B y D φ x A y D φ
9 ssralv C D y D φ y C φ
10 9 adantl A B C D y D φ y C φ
11 8 10 syl6d A B C D x B y D φ x A y C φ
12 1 2 11 ralrimd A B C D x B y D φ x A y C φ