Metamath Proof Explorer


Theorem ssrankr1

Description: A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets R1 . Proposition 9.15(3) of TakeutiZaring p. 79. (Contributed by NM, 8-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankid.1 A V
Assertion ssrankr1 B On B rank A ¬ A R1 B

Proof

Step Hyp Ref Expression
1 rankid.1 A V
2 unir1 R1 On = V
3 1 2 eleqtrri A R1 On
4 r1fnon R1 Fn On
5 fndm R1 Fn On dom R1 = On
6 4 5 ax-mp dom R1 = On
7 6 eleq2i B dom R1 B On
8 7 biimpri B On B dom R1
9 rankr1clem A R1 On B dom R1 ¬ A R1 B B rank A
10 3 8 9 sylancr B On ¬ A R1 B B rank A
11 10 bicomd B On B rank A ¬ A R1 B