Metamath Proof Explorer


Theorem ssrd

Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses ssrd.0 x φ
ssrd.1 _ x A
ssrd.2 _ x B
ssrd.3 φ x A x B
Assertion ssrd φ A B

Proof

Step Hyp Ref Expression
1 ssrd.0 x φ
2 ssrd.1 _ x A
3 ssrd.2 _ x B
4 ssrd.3 φ x A x B
5 1 4 alrimi φ x x A x B
6 2 3 dfss2f A B x x A x B
7 5 6 sylibr φ A B