Metamath Proof Explorer


Theorem ssrdv

Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)

Ref Expression
Hypothesis ssrdv.1 φ x A x B
Assertion ssrdv φ A B

Proof

Step Hyp Ref Expression
1 ssrdv.1 φ x A x B
2 1 alrimiv φ x x A x B
3 dfss2 A B x x A x B
4 2 3 sylibr φ A B