Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ssrdv
Next ⟩
sstr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssrdv
Description:
Deduction based on subclass definition.
(Contributed by
NM
, 15-Nov-1995)
Ref
Expression
Hypothesis
ssrdv.1
⊢
φ
→
x
∈
A
→
x
∈
B
Assertion
ssrdv
⊢
φ
→
A
⊆
B
Proof
Step
Hyp
Ref
Expression
1
ssrdv.1
⊢
φ
→
x
∈
A
→
x
∈
B
2
1
alrimiv
⊢
φ
→
∀
x
x
∈
A
→
x
∈
B
3
dfss2
⊢
A
⊆
B
↔
∀
x
x
∈
A
→
x
∈
B
4
2
3
sylibr
⊢
φ
→
A
⊆
B