Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
ssres
Next ⟩
ssres2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssres
Description:
Subclass theorem for restriction.
(Contributed by
NM
, 16-Aug-1994)
Ref
Expression
Assertion
ssres
⊢
A
⊆
B
→
A
↾
C
⊆
B
↾
C
Proof
Step
Hyp
Ref
Expression
1
ssrin
⊢
A
⊆
B
→
A
∩
C
×
V
⊆
B
∩
C
×
V
2
df-res
⊢
A
↾
C
=
A
∩
C
×
V
3
df-res
⊢
B
↾
C
=
B
∩
C
×
V
4
1
2
3
3sstr4g
⊢
A
⊆
B
→
A
↾
C
⊆
B
↾
C