Metamath Proof Explorer


Theorem ssrexf

Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses ssrexf.1 _ x A
ssrexf.2 _ x B
Assertion ssrexf A B x A φ x B φ

Proof

Step Hyp Ref Expression
1 ssrexf.1 _ x A
2 ssrexf.2 _ x B
3 1 2 nfss x A B
4 ssel A B x A x B
5 4 anim1d A B x A φ x B φ
6 3 5 eximd A B x x A φ x x B φ
7 df-rex x A φ x x A φ
8 df-rex x B φ x x B φ
9 6 7 8 3imtr4g A B x A φ x B φ