Metamath Proof Explorer


Theorem ssrexv

Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007)

Ref Expression
Assertion ssrexv A B x A φ x B φ

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 1 anim1d A B x A φ x B φ
3 2 reximdv2 A B x A φ x B φ