Metamath Proof Explorer


Theorem ssrin

Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssrin A B A C B C

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 1 anim1d A B x A x C x B x C
3 elin x A C x A x C
4 elin x B C x B x C
5 2 3 4 3imtr4g A B x A C x B C
6 5 ssrdv A B A C B C