Metamath Proof Explorer


Theorem ssrmof

Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses ssrexf.1 _ x A
ssrexf.2 _ x B
Assertion ssrmof A B * x B φ * x A φ

Proof

Step Hyp Ref Expression
1 ssrexf.1 _ x A
2 ssrexf.2 _ x B
3 1 2 dfss2f A B x x A x B
4 3 biimpi A B x x A x B
5 pm3.45 x A x B x A φ x B φ
6 5 alimi x x A x B x x A φ x B φ
7 moim x x A φ x B φ * x x B φ * x x A φ
8 4 6 7 3syl A B * x x B φ * x x A φ
9 df-rmo * x B φ * x x B φ
10 df-rmo * x A φ * x x A φ
11 8 9 10 3imtr4g A B * x B φ * x A φ