Metamath Proof Explorer


Theorem ssrnres

Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion ssrnres B ran C A ran C A × B = B

Proof

Step Hyp Ref Expression
1 inss2 C A × B A × B
2 1 rnssi ran C A × B ran A × B
3 rnxpss ran A × B B
4 2 3 sstri ran C A × B B
5 eqss ran C A × B = B ran C A × B B B ran C A × B
6 4 5 mpbiran ran C A × B = B B ran C A × B
7 inxpssres C A × B C A
8 7 rnssi ran C A × B ran C A
9 sstr B ran C A × B ran C A × B ran C A B ran C A
10 8 9 mpan2 B ran C A × B B ran C A
11 ssel B ran C A y B y ran C A
12 vex y V
13 12 elrn2 y ran C A x x y C A
14 11 13 syl6ib B ran C A y B x x y C A
15 14 ancld B ran C A y B y B x x y C A
16 12 elrn2 y ran C A × B x x y C A × B
17 opelinxp x y C A × B x A y B x y C
18 12 opelresi x y C A x A x y C
19 18 bianassc y B x y C A x A y B x y C
20 17 19 bitr4i x y C A × B y B x y C A
21 20 exbii x x y C A × B x y B x y C A
22 19.42v x y B x y C A y B x x y C A
23 16 21 22 3bitri y ran C A × B y B x x y C A
24 15 23 syl6ibr B ran C A y B y ran C A × B
25 24 ssrdv B ran C A B ran C A × B
26 10 25 impbii B ran C A × B B ran C A
27 6 26 bitr2i B ran C A ran C A × B = B