Step |
Hyp |
Ref |
Expression |
1 |
|
ssscongptld.angdef |
|
2 |
|
ssscongptld.1 |
|
3 |
|
ssscongptld.2 |
|
4 |
|
ssscongptld.3 |
|
5 |
|
ssscongptld.4 |
|
6 |
|
ssscongptld.5 |
|
7 |
|
ssscongptld.6 |
|
8 |
|
ssscongptld.7 |
|
9 |
|
ssscongptld.8 |
|
10 |
|
ssscongptld.9 |
|
11 |
|
ssscongptld.10 |
|
12 |
|
ssscongptld.11 |
|
13 |
|
ssscongptld.12 |
|
14 |
|
ssscongptld.13 |
|
15 |
|
negpitopissre |
|
16 |
|
ax-resscn |
|
17 |
15 16
|
sstri |
|
18 |
2 3
|
subcld |
|
19 |
2 3 8
|
subne0d |
|
20 |
4 3
|
subcld |
|
21 |
9
|
necomd |
|
22 |
4 3 21
|
subne0d |
|
23 |
1 18 19 20 22
|
angcld |
|
24 |
17 23
|
sselid |
|
25 |
24
|
coscld |
|
26 |
5 6
|
subcld |
|
27 |
5 6 10
|
subne0d |
|
28 |
7 6
|
subcld |
|
29 |
11
|
necomd |
|
30 |
7 6 29
|
subne0d |
|
31 |
1 26 27 28 30
|
angcld |
|
32 |
17 31
|
sselid |
|
33 |
32
|
coscld |
|
34 |
26
|
abscld |
|
35 |
34
|
recnd |
|
36 |
28
|
abscld |
|
37 |
36
|
recnd |
|
38 |
35 37
|
mulcld |
|
39 |
26 27
|
absne0d |
|
40 |
28 30
|
absne0d |
|
41 |
35 37 39 40
|
mulne0d |
|
42 |
4 3
|
abssubd |
|
43 |
7 6
|
abssubd |
|
44 |
13 42 43
|
3eqtr4d |
|
45 |
12 44
|
oveq12d |
|
46 |
45
|
oveq1d |
|
47 |
12 35
|
eqeltrd |
|
48 |
44 37
|
eqeltrd |
|
49 |
47 48
|
mulcld |
|
50 |
49 25
|
mulcld |
|
51 |
38 33
|
mulcld |
|
52 |
|
2cnd |
|
53 |
|
2ne0 |
|
54 |
53
|
a1i |
|
55 |
35
|
sqcld |
|
56 |
37
|
sqcld |
|
57 |
55 56
|
addcld |
|
58 |
52 50
|
mulcld |
|
59 |
52 51
|
mulcld |
|
60 |
12
|
oveq1d |
|
61 |
44
|
oveq1d |
|
62 |
60 61
|
oveq12d |
|
63 |
62
|
oveq1d |
|
64 |
14
|
oveq1d |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
|
eqid |
|
69 |
1 65 66 67 68
|
lawcos |
|
70 |
4 2 3 21 8 69
|
syl32anc |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
1 71 72 73 74
|
lawcos |
|
76 |
7 5 6 29 10 75
|
syl32anc |
|
77 |
64 70 76
|
3eqtr3d |
|
78 |
63 77
|
eqtr3d |
|
79 |
57 58 59 78
|
subcand |
|
80 |
50 51 52 54 79
|
mulcanad |
|
81 |
46 80
|
eqtr3d |
|
82 |
25 33 38 41 81
|
mulcanad |
|