Metamath Proof Explorer


Theorem sssn

Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion sssn A B A = A = B

Proof

Step Hyp Ref Expression
1 neq0 ¬ A = x x A
2 ssel A B x A x B
3 elsni x B x = B
4 2 3 syl6 A B x A x = B
5 eleq1 x = B x A B A
6 4 5 syl6 A B x A x A B A
7 6 ibd A B x A B A
8 7 exlimdv A B x x A B A
9 1 8 syl5bi A B ¬ A = B A
10 snssi B A B A
11 9 10 syl6 A B ¬ A = B A
12 11 anc2li A B ¬ A = A B B A
13 eqss A = B A B B A
14 12 13 syl6ibr A B ¬ A = A = B
15 14 orrd A B A = A = B
16 0ss B
17 sseq1 A = A B B
18 16 17 mpbiri A = A B
19 eqimss A = B A B
20 18 19 jaoi A = A = B A B
21 15 20 impbii A B A = A = B