Metamath Proof Explorer


Theorem sst0

Description: A topology finer than a T_0 topology is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t1sep.1 X = J
Assertion sst0 J Kol2 K TopOn X J K K Kol2

Proof

Step Hyp Ref Expression
1 t1sep.1 X = J
2 t0top J Kol2 J Top
3 cnt0 J Kol2 I X : X 1-1 X I X K Cn J K Kol2
4 1 2 3 sshauslem J Kol2 K TopOn X J K K Kol2