Metamath Proof Explorer


Theorem sst1

Description: A topology finer than a T_1 topology is T_1. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t1sep.1 X = J
Assertion sst1 J Fre K TopOn X J K K Fre

Proof

Step Hyp Ref Expression
1 t1sep.1 X = J
2 t1top J Fre J Top
3 cnt1 J Fre I X : X 1-1 X I X K Cn J K Fre
4 1 2 3 sshauslem J Fre K TopOn X J K K Fre