Step |
Hyp |
Ref |
Expression |
1 |
|
sstotbnd.2 |
|
2 |
1
|
sstotbnd2 |
|
3 |
|
elfpw |
|
4 |
3
|
simprbi |
|
5 |
|
mptfi |
|
6 |
|
rnfi |
|
7 |
4 5 6
|
3syl |
|
8 |
7
|
ad2antrl |
|
9 |
|
simprr |
|
10 |
|
eqid |
|
11 |
10
|
rnmpt |
|
12 |
3
|
simplbi |
|
13 |
|
ssrexv |
|
14 |
12 13
|
syl |
|
15 |
14
|
ad2antrl |
|
16 |
15
|
ss2abdv |
|
17 |
11 16
|
eqsstrid |
|
18 |
|
unieq |
|
19 |
|
ovex |
|
20 |
19
|
dfiun3 |
|
21 |
18 20
|
eqtr4di |
|
22 |
21
|
sseq2d |
|
23 |
|
ssabral |
|
24 |
|
sseq1 |
|
25 |
23 24
|
bitr3id |
|
26 |
22 25
|
anbi12d |
|
27 |
26
|
rspcev |
|
28 |
8 9 17 27
|
syl12anc |
|
29 |
28
|
rexlimdvaa |
|
30 |
|
oveq1 |
|
31 |
30
|
eqeq2d |
|
32 |
31
|
ac6sfi |
|
33 |
32
|
adantrl |
|
34 |
33
|
adantl |
|
35 |
|
frn |
|
36 |
35
|
ad2antrl |
|
37 |
|
simplrl |
|
38 |
|
ffn |
|
39 |
38
|
ad2antrl |
|
40 |
|
dffn4 |
|
41 |
39 40
|
sylib |
|
42 |
|
fofi |
|
43 |
37 41 42
|
syl2anc |
|
44 |
|
elfpw |
|
45 |
36 43 44
|
sylanbrc |
|
46 |
|
simprrl |
|
47 |
46
|
adantr |
|
48 |
|
uniiun |
|
49 |
|
iuneq2 |
|
50 |
48 49
|
eqtrid |
|
51 |
50
|
ad2antll |
|
52 |
47 51
|
sseqtrd |
|
53 |
30
|
eleq2d |
|
54 |
53
|
rexrn |
|
55 |
|
eliun |
|
56 |
|
eliun |
|
57 |
54 55 56
|
3bitr4g |
|
58 |
57
|
eqrdv |
|
59 |
39 58
|
syl |
|
60 |
52 59
|
sseqtrrd |
|
61 |
|
iuneq1 |
|
62 |
61
|
sseq2d |
|
63 |
62
|
rspcev |
|
64 |
45 60 63
|
syl2anc |
|
65 |
34 64
|
exlimddv |
|
66 |
65
|
rexlimdvaa |
|
67 |
29 66
|
impbid |
|
68 |
67
|
ralbidv |
|
69 |
2 68
|
bitrd |
|