Metamath Proof Explorer


Theorem sstp

Description: The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion sstp A B C D A = A = B A = C A = B C A = D A = B D A = C D A = B C D

Proof

Step Hyp Ref Expression
1 df-tp B C D = B C D
2 1 sseq2i A B C D A B C D
3 0ss A
4 3 biantrur A B C D A A B C D
5 ssunsn2 A A B C D A A B C D A A B C D
6 3 biantrur A B C A A B C
7 sspr A B C A = A = B A = C A = B C
8 6 7 bitr3i A A B C A = A = B A = C A = B C
9 uncom D = D
10 un0 D = D
11 9 10 eqtri D = D
12 11 sseq1i D A D A
13 uncom B C D = D B C
14 13 sseq2i A B C D A D B C
15 12 14 anbi12i D A A B C D D A A D B C
16 ssunpr D A A D B C A = D A = D B A = D C A = D B C
17 uncom D B = B D
18 df-pr B D = B D
19 17 18 eqtr4i D B = B D
20 19 eqeq2i A = D B A = B D
21 20 orbi2i A = D A = D B A = D A = B D
22 uncom D C = C D
23 df-pr C D = C D
24 22 23 eqtr4i D C = C D
25 24 eqeq2i A = D C A = C D
26 1 13 eqtr2i D B C = B C D
27 26 eqeq2i A = D B C A = B C D
28 25 27 orbi12i A = D C A = D B C A = C D A = B C D
29 21 28 orbi12i A = D A = D B A = D C A = D B C A = D A = B D A = C D A = B C D
30 15 16 29 3bitri D A A B C D A = D A = B D A = C D A = B C D
31 8 30 orbi12i A A B C D A A B C D A = A = B A = C A = B C A = D A = B D A = C D A = B C D
32 5 31 bitri A A B C D A = A = B A = C A = B C A = D A = B D A = C D A = B C D
33 2 4 32 3bitri A B C D A = A = B A = C A = B C A = D A = B D A = C D A = B C D