Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sstrid
Next ⟩
sstrdi
Metamath Proof Explorer
Ascii
Unicode
Theorem
sstrid
Description:
Subclass transitivity deduction.
(Contributed by
NM
, 6-Feb-2014)
Ref
Expression
Hypotheses
sstrid.1
⊢
A
⊆
B
sstrid.2
⊢
φ
→
B
⊆
C
Assertion
sstrid
⊢
φ
→
A
⊆
C
Proof
Step
Hyp
Ref
Expression
1
sstrid.1
⊢
A
⊆
B
2
sstrid.2
⊢
φ
→
B
⊆
C
3
1
a1i
⊢
φ
→
A
⊆
B
4
3
2
sstrd
⊢
φ
→
A
⊆
C