Metamath Proof Explorer


Theorem ssundif

Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007)

Ref Expression
Assertion ssundif A B C A B C

Proof

Step Hyp Ref Expression
1 pm5.6 x A ¬ x B x C x A x B x C
2 eldif x A B x A ¬ x B
3 2 imbi1i x A B x C x A ¬ x B x C
4 elun x B C x B x C
5 4 imbi2i x A x B C x A x B x C
6 1 3 5 3bitr4ri x A x B C x A B x C
7 6 albii x x A x B C x x A B x C
8 dfss2 A B C x x A x B C
9 dfss2 A B C x x A B x C
10 7 8 9 3bitr4i A B C A B C