Metamath Proof Explorer


Theorem ssunieq

Description: Relationship implying union. (Contributed by NM, 10-Nov-1999)

Ref Expression
Assertion ssunieq A B x B x A A = B

Proof

Step Hyp Ref Expression
1 elssuni A B A B
2 unissb B A x B x A
3 2 biimpri x B x A B A
4 1 3 anim12i A B x B x A A B B A
5 eqss A = B A B B A
6 4 5 sylibr A B x B x A A = B