Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The union of a class
ssunieq
Next ⟩
unimax
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssunieq
Description:
Relationship implying union.
(Contributed by
NM
, 10-Nov-1999)
Ref
Expression
Assertion
ssunieq
⊢
A
∈
B
∧
∀
x
∈
B
x
⊆
A
→
A
=
⋃
B
Proof
Step
Hyp
Ref
Expression
1
elssuni
⊢
A
∈
B
→
A
⊆
⋃
B
2
unissb
⊢
⋃
B
⊆
A
↔
∀
x
∈
B
x
⊆
A
3
2
biimpri
⊢
∀
x
∈
B
x
⊆
A
→
⋃
B
⊆
A
4
1
3
anim12i
⊢
A
∈
B
∧
∀
x
∈
B
x
⊆
A
→
A
⊆
⋃
B
∧
⋃
B
⊆
A
5
eqss
⊢
A
=
⋃
B
↔
A
⊆
⋃
B
∧
⋃
B
⊆
A
6
4
5
sylibr
⊢
A
∈
B
∧
∀
x
∈
B
x
⊆
A
→
A
=
⋃
B