Metamath Proof Explorer
Description: Sufficient condition for being a subclass of the union of an
intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
ssuniint.x |
|
|
|
ssuniint.a |
|
|
|
ssuniint.b |
|
|
Assertion |
ssuniint |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssuniint.x |
|
2 |
|
ssuniint.a |
|
3 |
|
ssuniint.b |
|
4 |
1 2 3
|
elintd |
|
5 |
|
elssuni |
|
6 |
4 5
|
syl |
|