Metamath Proof Explorer


Theorem ssuniint

Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssuniint.x x φ
ssuniint.a φ A V
ssuniint.b φ x B A x
Assertion ssuniint φ A B

Proof

Step Hyp Ref Expression
1 ssuniint.x x φ
2 ssuniint.a φ A V
3 ssuniint.b φ x B A x
4 1 2 3 elintd φ A B
5 elssuni A B A B
6 4 5 syl φ A B