Metamath Proof Explorer


Theorem ssunpr

Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ssunpr B A A B C D A = B A = B C A = B D A = B C D

Proof

Step Hyp Ref Expression
1 df-pr C D = C D
2 1 uneq2i B C D = B C D
3 unass B C D = B C D
4 2 3 eqtr4i B C D = B C D
5 4 sseq2i A B C D A B C D
6 5 anbi2i B A A B C D B A A B C D
7 ssunsn2 B A A B C D B A A B C B D A A B C D
8 ssunsn B A A B C A = B A = B C
9 un23 B C D = B D C
10 9 sseq2i A B C D A B D C
11 10 anbi2i B D A A B C D B D A A B D C
12 ssunsn B D A A B D C A = B D A = B D C
13 4 9 eqtr2i B D C = B C D
14 13 eqeq2i A = B D C A = B C D
15 14 orbi2i A = B D A = B D C A = B D A = B C D
16 11 12 15 3bitri B D A A B C D A = B D A = B C D
17 8 16 orbi12i B A A B C B D A A B C D A = B A = B C A = B D A = B C D
18 6 7 17 3bitri B A A B C D A = B A = B C A = B D A = B C D