Metamath Proof Explorer


Theorem ssunpr

Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ssunpr BAABCDA=BA=BCA=BDA=BCD

Proof

Step Hyp Ref Expression
1 df-pr CD=CD
2 1 uneq2i BCD=BCD
3 unass BCD=BCD
4 2 3 eqtr4i BCD=BCD
5 4 sseq2i ABCDABCD
6 5 anbi2i BAABCDBAABCD
7 ssunsn2 BAABCDBAABCBDAABCD
8 ssunsn BAABCA=BA=BC
9 un23 BCD=BDC
10 9 sseq2i ABCDABDC
11 10 anbi2i BDAABCDBDAABDC
12 ssunsn BDAABDCA=BDA=BDC
13 4 9 eqtr2i BDC=BCD
14 13 eqeq2i A=BDCA=BCD
15 14 orbi2i A=BDA=BDCA=BDA=BCD
16 11 12 15 3bitri BDAABCDA=BDA=BCD
17 8 16 orbi12i BAABCBDAABCDA=BA=BCA=BDA=BCD
18 6 7 17 3bitri BAABCDA=BA=BCA=BDA=BCD