Metamath Proof Explorer


Theorem ssunsn

Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ssunsn B A A B C A = B A = B C

Proof

Step Hyp Ref Expression
1 ssunsn2 B A A B C B A A B B C A A B C
2 ancom B A A B A B B A
3 eqss A = B A B B A
4 2 3 bitr4i B A A B A = B
5 ancom B C A A B C A B C B C A
6 eqss A = B C A B C B C A
7 5 6 bitr4i B C A A B C A = B C
8 4 7 orbi12i B A A B B C A A B C A = B A = B C
9 1 8 bitri B A A B C A = B A = B C